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Abstract

Cross-domain recommendation methods usually
transfer knowledge across different domains im-
plicitly, by sharing model parameters or learning
parameter mappings in the latent space. Differing
from previous studies, this work focuses on learn-
ing the explicit mapping between a user’s behav-
iors (i.e., interaction itemsets) in different domains
during the same temporal period. In this paper,
we propose a novel deep cross-domain recommen-
dation model, called Cycle Generation Networks
(CGN). Specifically, CGN employs two generators
to construct the dual-direction personalized item-
set mapping between a user’s behaviors in two
different domains over time. The generators are
learned by optimizing the distance between the
generated itemset and the real interacted itemset, as
well as the cycle consistency loss defined based on
the dual-direction generation procedure. We have
performed extensive experiments on real datasets
to demonstrate the effectiveness of the proposed
model, comparing with existing single-domain and
cross-domain recommendation methods.

1 Introduction
Recommendation system has recently become a widespread
research topic. Existing recommendation methods are usually
developed based on collaborative filtering (CF) techniques,
e.g., matrix factorization [Liu et al., 2017; Liu et al., 2018].
The quick development of deep learning (DL) also motivates
the emergence of various DL-based recommendation meth-
ods [Wang et al., 2017; Wang et al., 2019; Wu et al., 2019;
Lian et al., 2020a; Lian et al., 2020b]. These DL-based meth-
ods can deal with more complex user-item interaction pat-
terns in an end-to-end manner. However, both CF- and DL-
based methods usually treat the recommendation problem as
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a supervised machine learning task, which needs a lot of his-
torical data. As a user may only interact with a small fraction
of items, traditional recommendation methods suffer severely
from the data-sparsity problem.

To solve this challenge, various cross-domain recommen-
dation methods have been proposed, and most of them are
based on transfer learning [Pan, 2016]. The main objective
is to transfer knowledge from the source domain with abun-
dant interaction data to the target domain with limited inter-
action data. The knowledge learned in the source domain can
be used as priors to define a regularization loss to improve
the recommendation accuracy in the target domain. More-
over, there also exist some application scenarios where all
domains suffer from the data sparsity issue. In this kind of
scenarios, the recommendation models for different domains
are collectively trained, by learning domain-specific factors
and domain-sharing factors simultaneously. In those meth-
ods mentioned above, the knowledge is implicitly transferred
across domains by sharing model parameters [Singh and Gor-
don, 2008; Hu et al., 2018; Huang et al., 2019] or learn-
ing parameter mappings in latent space [Jiang et al., 2016;
Man et al., 2017; Li and Tuzhilin, 2020].

In practice, users’ interests and states may vary over time.
How to quickly capture these changes and recommend most
suitable items is fundamentally essential for a recommender
system. Moreover, as users usually interact with items in mul-
tiple domains, it is evident that users may interact with some
domains first when they get a new interest or transfer to a new
state. Taking star tracers as an example, many of them may
change their idols very frequently. They may become inter-
ested in a new idol after watching a movie or TV show. To
better understand and support the idol, they would like to pur-
chase relevant magazines or products. If an explicit mapping
between a user’s behaviors in the movie domain and the mag-
azine domain at the same temporal period is constructed, we
can promptly update the magazine recommendation based on
the user’s recent watching behaviors. In this paper, we study
the cross-domain recommendation problem, where we aim to
exploit a user’s behavior data in one domain to generate her
item recommendation for the same temporal period in another
domain. Figure 1 shows an example of the cross-domain rec-
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Figure 1: An example of the cross-domain recommendation task
studied in this paper. The user clicks the toy “Captain America”,
which indicates he may have interests in relevant movies. Thus,
the recommender agent recommends the movies “Civil War” and
“Avengers: Endgame” to the user. After he has watched “Avengers:
Endgame”, the agent recommends toys – “Hulk” and “Spiderman”,
who appear in the movie.

ommendation problem studied in this paper.
To solve this recommendation problem, we propose a novel

cross-domain recommendation model, i.e., Cycle Generation
Networks (CGN), which utilizes two generators to learn a
user’s personalized mapping between her interaction item-
sets in different domains at the same temporal period. For
each generator, it uses the set of user’s interaction items in
one domain as input to generate her item recommendation
in the other domain. CGN enables dual-direction mapping
across domains. The generators are learned by minimizing
the distance between the generated itemset and the relevant
itemset in each domain, as well as the cycle consistency loss
defined based on the dual-direction mapping process. In ad-
dition, we also perform extensive experiments on four real-
world datasets to demonstrate the effectiveness of CGN. CGN
usually outperforms baseline methods in terms of most eval-
uation metrics. These experimental results indicate that it is
possible to learn a direct mapping between a user’s behaviors
(i.e., interaction itemsets) across different domains over time.

2 Related Work
One group of cross-domain recommendation systems are
based on CF methods [Pan, 2016]. For example, the collec-
tive matrix factorization [Singh and Gordon, 2008] transfers
knowledge across different domains by jointly learning latent
representations from multiple matrices that describe interac-
tions in multiple domains. In [Loni et al., 2014], users’ inter-
actions with a specific type of items are treated as a particular
domain, and factorization machine is employed to transfer in-
teraction information in auxiliary domain to generate recom-
mendation in a target domain. In [Li and Lin, 2014], a match-
ing procedure is applied to identify the user/item correspon-
dences between different domains, and a transfer learning ap-
proach is proposed to improve the recommendation accuracy
in the target domain. In [Liu et al., 2015], a hyper-structure
transfer method is proposed to capture the non-linear correla-
tion of knowledge in different domains.

Another line of cross-domain recommendation research
focuses on developing DL-based recommendation methods.
For example, [Man et al., 2017] proposes an embedding and
mapping framework to capture the non-linear mapping across
different domains by a multi-layer perception. [Zhu et al.,

2018] develops a deep learning framework to integrate ma-
trix factorization models and fully connected deep neural net-
works for cross-domain and cross-system recommendations.
[Hu et al., 2018] proposes a deep transfer learning method,
called collaborative cross networks (CoNet), which assumes
the hidden layers of base networks designed for different do-
mains are connected by cross mapping. The dual knowledge
transfer across domains is enabled by the cross connections
between base networks. [Fu et al., 2019] proposes a deep
fusion model which uses a multi-layer perceptron to transfer
users’ latent factors in different domains to solve the cold-
start problem. Moreover, in [Kanagawa et al., 2019], the
recommendation problem is formulated as an extreme multi-
class classification problem. The recommendation problem
is transferred to be a domain adoption task, and a domain
separation network is developed to solve the recommenda-
tion problem. In [Hu et al., 2019], the TMH (i.e., transfer
meeting hybrid) model employs a memory network to extract
useful information from unstructured text, and uses a trans-
fer network to transfer knowledge from the source domain.
In [Yuan et al., 2019], a deep domain adaption model is pro-
posed to extract and transfer patterns from rating matrices in
different domains, without considering auxiliary information.

3 Cycle Generation Networks
3.1 Problem Formulation
For simplicity, we consider the cross-domain recommenda-
tion between two item domains X and Y (e.g., Books and
Movies) in this work. We assume that all domains share a
common set of users U , and denote the set of items in these
domains by X and Y , respectively. For each user u, we de-
note the list of her sequential interaction items in domain X
by LX

u = {i1, i2, · · · , it, · · · , i|LX
u |}, where it denote the in-

teraction item at timestamp t. Similarly, we use LY
u to de-

note her interaction item sequence in domain Y . In addi-
tion, we denote the user embedding in the two domains by
uX ∈ R1×d and uY ∈ R1×d, and use xi ∈ R1×d and
yj ∈ R1×d to denote the embedding of items i ∈ X and
j ∈ Y respectively, where d is the dimensionality of the latent
space. The cross-domain recommendation problem studied in
this work can be defined as follows: for each user, given a set
of her latest interaction items in a domain, we generate a set
of items she may have interests in the other domain.

To solve this cross-domain problem, we propose the CGN
model to learn a personalized mapping between a user’s inter-
action itemsets in different domains. Figure 2 shows the over-
all structure of the proposed CGN model. As shown in Fig-
ure 2, CGN employs two generator networks G and F to en-
able the dual-direction mappings between different domains
over time. The generator G constructs the mapping from a
user’s interaction itemset Xu in domain X to her interaction
itemset Yu in domain Y , and similarly F builds the mapping
from Yu to Xu. Note that the user interacts with Xu and Yu
during the same temporal period.

3.2 Loss Function
To enable personalized itemset mapping, we also consider
the user’s embeddings in different domains as inputs to the
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Figure 2: The structure of the proposed cross-domain recommendation model.

generators. For example, while generating item recommen-
dations in domain Y , we feed both the user embedding uY

and the embeddings EXu of her interaction itemset Xu to
the network G. Here, we can treat uY as the user u’s long-
term preferences in domain Y , and EXu as the user’s short-
term preferences in domain X . The objective of G is to pre-
dict u’s latest short-term preferences in domain Y , consid-
ering both uY and EXu

. Therefore, Yu can be used as the
ground truth to estimate the prediction accuracy of the gener-
ator G. As the output of G is a matrix with size |Yu| × d,
instead of the concrete items, we cannot directly compare
it with Yu. Therefore, we treat G(uY ,EXu) as the embed-
dings of the generated itemset and compare it with the em-
bedding EYu of the ground truth itemset Yu. In this work, we
use the maximum mean discrepancy (MMD) [Yujia Li, 2015;
Zhang et al., 2017] to define the distance between the out-
put of the generator network and the features of the ground
truth itemset. The MMD between a generated item feature
distribution M ∈ Rm×d and the feature distribution of the
interaction items M̃ ∈ Rn×d is defined as:

MMD(M ,M̃) =
1

m2

m∑
a=1

m∑
a′=1

K(Ma,Ma′)

+
1

n2

n∑
b=1

n∑
b′=1

K(M̃ b,M̃ b′)−
2

mn

m∑
a=1

n∑
b=1

K(Ma,M̃ b),

(1)

where K(·) is the kernel function, Ma and M̃ b denote the
ath row of M and the bth row of M̃ . Empirically, we
use Gaussian kernel with bandwidth τ , i.e., K(f ,f ′) =
exp(−||f − f ′||2/2τ), as the kernel function. Then, we can
define a generation loss for learning generators:

`gen(uX ,uY ,Xu,Yu) = MMD
(
G(uY ,EXu),EYu

)
+MMD

(
F(uX ,EYu

),EXu

)
. (2)

Although the generation loss defined in Eq. (2) can help
generate relevant but interest-oriented items in target do-
mains, there also exists another important connection be-
tween items and networks. More specifically, we argue that
the generation procedure should be cycle-consistent [Zhu et
al., 2017]. For example, when we use the output of G as
one of the input of network F , the translation cycle needs to
bring the output back to one of the initial input of network
G, i.e., G(uY ,EXu

)→ F(uX ,G(uY ,EXu
)) ≈ EXu

. Simi-
larly, the translation cycle fromF to G follows the same strat-
egy: F(uX ,EYu

) → G(uY ,F(uX ,EYu
)) ≈ EYu

. There-
fore, we also consider the following cycle consistency loss
for learning the parameters of generators:

`cyc(uX ,uY ,Xu,Yu) =
∥∥F(uX ,G(uY ,EXu))−EXu

∥∥2
F

+
∥∥G(uY ,F(uX ,EYu

))−EYu

∥∥2
F
, (3)

where ‖ · ‖F denotes the Frobenius norm of a matrix. Then,
we use a linear combination of the loss functions in Eq. (2)
and Eq. (3) to define the final loss function as follows:

`gen(uX ,uY ,Xu,Yu) + λ`cyc(uX ,uY ,Xu,Yu). (4)

By incorporating the cycle consistence loss, CGN constrains
the sizes of input itemsets to be the same (i.e., |Xu| = |Yu|).

3.3 Model Training
To exploit users’ historical behavior data for model train-
ing, we firstly assume the user’s interests are consistent in
a short temporal period, and then split the historical inter-
actions of each user into several non-overlapping partitions
according to the interaction timestamps. For each user u,
her interaction data LX

u are divided into Ku parts as LX
u =

{LX
u,1,LX

u,2, . . . ,LX
u,Ku
}, where LX

u,k denotes the user’s in-
teraction itemset in domain X in the kth temporal period.
The same data processing operation has also been applied
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Algorithm 1 Training Algorithm of CGN Model

Input: The observed interactions in domain X and domain
Y , embeddings of all users and items in X and Y , learn-
ing rate θ, batch size B, number of recommended items
N , regularization parameter λ;

Output: The generation networks G and F ;
1: Initialize the replay buffer B ← ∅;
2: Randomly initialize the parameters of generators G, F ;
3: for each u ∈ U do
4: for k = 1, 2, . . . ,Ku do
5: Receive u’s itemsets LX

u,k and LY
u,k and construct

X k
u and Yk

u from LX
u,k and LY

u,k, respectively;
6: Add the training sample < uX ,uY ,EXk

u
,EYk

u
>

to replay buffer B;
7: end for
8: end for
9: for episode = 1, 2, · · · ,max iter do

10: Sample a mini-batch of B training samples from B
with replay sampling techniques;

11: Update both G and F by minimizing the loss function
in Eq. (5);

12: end for

to LY
u = {LY

u,1,LY
u,2, . . . ,LY

u,Ku
}. Note that Ku is deter-

mined by the data processing strategy. The details of the
data processing operation used in this work are introduced in
Section 4.1. For each temporal period, we use CGN to con-
struct the itemset mapping between two domains. We denote
the itemset inputs of G and F in the kth temporal period by
X k

u and Yk
u , respectively. According to the loss definition in

Eq. (4), we first assume |X k
u | = |Yk

u | = N , where N denotes
the number of recommended items. X k

u is build based on
LX
u,k. If LX

u,k has more thanN items, we randomly sampleN
different items from LX

u,k to be X k
u . Otherwise, we construct

X k
u by randomly sampling N items from LX

u,k with replace-
ment. Similarly, we build Yk

u from LY
u,k. Then, we define the

following loss function based on all users’ historical data:∑
u∈U

Ku∑
k=1

[
`gen(uX ,uY ,X k

u ,Yk
u) + λ`cyc(uX ,uY ,X k

u ,Yk
u)
]
.

(5)

In the training phase, a user’s interaction data in different do-
mains appear in pairs, e.g., (uX ,uY ,X k

u ,Yk
u). To make the

training of the networks more stable, a mini-batch of inter-
action data pairs are randomly sampled to update the model.
The details are summarized in Algorithm 1.

3.4 Item Recommendation
Once the parameters of the generators have been learned, we
use G to generate item recommendation in domain Y , and F
to generate item recommendation in domainX . As the output
of a generator is a feature matrix instead of a set of items, we
develop an item mapping module to map the generator output
to real items. Assuming H ∈ RN×d is the output matrix of
a generator, we consider each row vector Hi ∈ R1×d as a
pseudo item vector. Then, for each pseudo item vector, we
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Figure 3: The recommendation process for domain Y

Datasets #Initial #Initial #Valid #Valid #Valid
users items users items inter.

Home 2,512 K 410 K 206 4,793 6,637
Clothing 3,117 K 1,136 K 6,159 6,525
Books 8,026 K 2,330 K 800 37,533 159,735
Movies 2,089 K 201 K 22,662 114,808

Table 1: The statistics of experimental datasets.

retrieve the most similar item from the candidate item set,
according to the Euclidean distance between the pseudo item
vector and embeddings of candidate items. Figure 3 shows an
example of the item recommendation procedure in domain Y .

4 Experiments
4.1 Experimental Settings
Datasets: The experiments are performed on the Amazon-
review dataset [He and McAuley, 2016]. We choose users’
behavior data on four categories for evaluation, i.e., “Home
and Kitchen”, “Clothing, Shoes and Jewelry”, “ Books”, and
“Movies and TV” (respectively denoted by “Home”, “Cloth-
ing”, “Books”, and “Movies”). On the Amazon platform, a
user can rate a product only after she has purchased the item.
Thus, we convert all the observed review ratings to be positive
interactions. In the experiments, each category is treated as a
domain. We study two cross-domain recommendation tasks
by dividing the datasets into two groups: 1) source domain:
“Clothing” and target domain: “Home”; 2) source domain:
“Movies” and target domain: “ Books”.
Setup and Metrics: On each dataset, we sort each user’s
rating history according to the rating timestamps. Then, for
each task, we split a user u’s rating history into Ku non-
overlapping parts in both domains, by the following strat-
egy. We assume the rating time difference between two
neighbouring items in the same partition should be smaller
than a temporal threshold ∆. For example, for the rating
record {i1, i2, . . . , ij , . . . , iT }, if tj+1 − tj ≤ ∆, we con-
sider item ij and ij+1 in the same partition, where tj de-
notes the rating time for the jth interaction item. To make
the number of items in each partition balanced, we empir-
ically set ∆ to be 30 days, and denote the number of par-
titions in both domains by KX

u and KY
u . Then, we match

the partitions across both domains, according to the follow-
ing steps: 1) For the pth partition LX

u,p in domain X , we
retrieve the nearest partition LY

u,q′ in domain Y by setting
q′ = arg minq∈[1,KY

u ] |t̃p − t̃q|, where t̃p and t̃q denotes the
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Datasets Metrics BPRMF Caser CMF CoNet CGNw/o UE CGNw/o Cycle CGN

Source Domain:
Clothing;
Target Domain:
Home

Hit Ratio@5 0.1582 0.2260∗ 0.0113∗ 0.0622∗ 0.1695 0.1582 0.2316
Hit Ratio@10 0.2316 0.2486∗ 0.0226∗ 0.0735∗ 0.2316 0.2316 0.2700
Hit Ratio@20 0.3277 0.2768∗ 0.0339∗ 0.1469∗ 0.2825 0.3107 0.3220
Precision@5 0.0757 0.0678∗ 0.0023∗ 0.0147∗ 0.1209 0.1232 0.1100
Precision@10 0.0723 0.0514∗ 0.0023∗ 0.0090∗ 0.1113 0.1215 0.1249
Precision@20 0.0715 0.0412∗ 0.0017∗ 0.0102∗ 0.0760 0.0783 0.0900
Recall@5 0.0312∗ 0.0301∗ 0.0021∗ 0.0070∗ 0.0655 0.0651 0.0612
Recall@10 0.0613∗ 0.0418∗ 0.0068∗ 0.0091∗ 0.1141 0.1203 0.1267
Recall@20 0.1194 0.0600∗ 0.0110∗ 0.0297∗ 0.1339 0.1428 0.1606

Source Domain:
Movies;
Target Domain:
Books

Hit Ratio@5 0.0405 0.0544 0.0038∗ 0.0139∗ 0.0126 0.0708 0.0777
Hit Ratio@10 0.0683 0.0822 0.0101∗ 0.0405∗ 0.0240 0.0936 0.1113
Hit Ratio@20 0.0910 0.1113 0.0177∗ 0.0797∗ 0.0202 0.0961 0.1290
Precision@5 0.0162 0.0134 0.0008∗ 0.0038∗ 0.0028 0.0245 0.0238
Precision@10 0.0182 0.0124∗ 0.0010∗ 0.0051∗ 0.0028 0.0214 0.0230
Precision@20 0.0197 0.0104 0.0010∗ 0.0051∗ 0.0013 0.0130 0.0181
Recall@5 0.0017 0.0042 0.0003∗ 0.0009∗ 0.0005 0.0050 0.0064
Recall@10 0.0045∗ 0.0081 0.0007∗ 0.0037 0.0013 0.0092 0.0140
Recall@20 0.0088 0.0120∗ 0.0018∗ 0.0079∗ 0.0025 0.0071 0.0165

Table 2: Performances of different recommendation algorithms. The best results are in bold faces and the second best results are underlined.
“∗” indicates the improvement of CGN over baseline method is significant with p < 0.05 using student t-test.

earliest rating time in LX
u,p and LY

u,q respectively. Then, we
construct a partition pair (LX

u,p,LY
u,q′); 2) For each partition

LY
u,q in domain Y , we also retrieve the nearest partition LX

u,p′

in domain X by the same strategy in step 1, and construct a
partition pair (LX

u,p′ ,LY
u,q); 3) We keep the common partition

pairs in both steps 1 and 2, and remove other partitions. After
these three steps, for each user u, she has the same number
of data partitions (i.e., Ku) in both domains. Moreover, we
also remove the users that have less than two training par-
tition pairs. After the pre-processing, there are 206 shared
users, 4,793 items in the “Home” domain, and 6,159 items
in the “Clothing” domain, with 6,637 and 6,525 ratings, re-
spectively. For domains “Books” and “Movies”, there are 800
shared users with 37,533 books and 22,662 movies. The num-
bers of ratings are 159,735 and 114,808, respectively. Table 1
summarizes the statistics of the experimental datasets.

For each user, in each domain, we use her last data par-
tition for testing, and the other partitions for model train-
ing. Additionally, the last partition in training data can be
used as validation data for choosing hyper-parameters. The
performances of the recommendation algorithms are mea-
sured by three widely used evaluation metrics: Precision@N ,
Recall@N , and Hit Ratio@N . In the experiments, we empir-
ically set N to 5, 10, and 20.

Baseline Methods: We compare CGN with the following
recommendation methods: (1) BPRMF [Rendle et al., 2009]:
This is a single-domain recommendation method based on
matrix factorization; (2) Caser [Tang and Wang, 2018]: This
is a deep learning based recommendation method for single-
domain recommendation, which employs convolutional neu-
ral networks to model the users’ personalized sequential be-
havior patterns; (3) CMF [Singh and Gordon, 2008]: This is
the collective matrix factorization method for cross-domain
recommendation. It assumes a user shares the same embed-
ding in different domains; (4) CoNet [Hu et al., 2018]: This
is a deep transfer learning approach for cross-domain recom-

mendation. It transfers knowledge across domains by intro-
ducing neural layers with shared weight matrices in the deep
learning network; (5) CGNw/o UE: This is a special case of
CGN, without considering the user’s embeddings as the gen-
erator input; (6) CGNw/o Cycle: This special case of CGN does
not use cycle consistency loss to learn the model parameters.
Model Implementation: The generators G and F of CGN
are implemented with the same network structure which con-
sists of five fully connected neural layers. We use ReLU(·) as
the activation function in the first four layers, and use Tanh(·)
as the activation function in the final layer. The BPRMF
method is used to learn the embeddings of users and items
in different domains, based on the observed interactions in
training data. The Adam algorithm [Kingma and Ba, 2015]
is used to learn the model parameters, and the learning rate
θ is set to 0.0001. In the experiments, we empirically set the
Gaussian kernel width τ to 2, the dimensionality of embed-
ding d to 10, the regularization parameter λ to 0.5, and the
training batch size B to 64.

4.2 Summary of Experimental Results
Table 2 summarizes the cross-domain recommendation re-
sults on different datasets. We have made the following ob-
servations. The proposed CGN method usually achieves bet-
ter results than baseline methods in terms of most evaluation
metrics. For example, CGN significantly outperforms Caser,
CMF and CoNet on the target domain “Home”. When gener-
ating item recommendations in domain “Books”, CGN per-
forms better than all baselines, in terms of Hit Ratio and Re-
call. These results indicate that it is possible to use a user’s in-
teraction items in one domain to generate her item recommen-
dation during the same temporal period in another domain.
Moreover, the recommendation mechanism of CGN is dif-
ferent from existing methods, by directly learning personal-
ized mapping across different domains over time. Therefore,
CGN may be used as a complementary to existing methods.
In addition, CGN outperforms CGNw/o UE and CGNw/o Cycle
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Figure 4: The recommendation accuracy of CGN with respect to different settings of d, λ, and B, measured by Precision@10.

ID Time Name

0784011206 2008.10.06 Rambo: 
First Blood

6301024443 2008.10.06 Prince of 
Darkness

Input (Movie Domain) Recommendation Books
Ground Truth (Book Domain)

Generator

ID Name

0345433300 The Manhattan 
Hunt Club

0060521600 Ice Hunt

ID Time Name

0060788380 2008.10.01 For a Few Demons More

0061233544 2008.10.16 The Dracula Dossier

0345533461 2008.11.05 Velocity: A Novel

0060521600 2008.11.19 Ice Hunt

Figure 5: A case study of cross-domain recommendation for user (ID=“AIIR8E34EDKCQ”).

in most recommendation scenarios. This indicates that both
users’ personalized preferences and the cycle consistency loss
can help improve cross-domain recommendation accuracy.

Moreover, we also study the performances of CGN with
respect to (w.r.t.) different settings of three key parameters.
Firstly, we vary the dimensionality of the latent space d in
{5, 10, 20, 30, 50, 70, 100}. As shown in Figure 4(a), the rec-
ommendation accuracy, in terms of Precision@10, first in-
creases and then gradually decreases with the increase of d.
The best performance is achieved when d is set to 10. More-
over, we vary the regularization parameter for cycle consis-
tency loss λ in {0, 0.01, 0.1, 0.5, 1.0, 10}. From Figure 4(b),
we can note that the recommendation accuracy can be im-
proved by incorporating cycle consistency loss in training the
generator networks, when λ is set to 0.01, 0.1, 0.5, and 1.0.
The recommendation accuracy drops drastically by changing
λ from 1.0 to 10. For the batch size B in the model training,
we choose B in {64, 128, 256, 512}. Figure4(c) summarizes
the performance trend of CGN w.r.t. different settings of B.
We can note that better results can be usually achieved by
using a smaller batch size (e.g., B = 64).

In addition, we perform a case study to investigate whether
the learned itemset mapping can make sense. As shown in
Figure 5, we select a user (ID=“AIIR8E34EDKCQ”) who has
watched “Rambo: First Blood” and “Prince of Darkness” in
the testing data of Movie domain (i.e., have not been used for
model training). After feeding the pre-trained embeddings of
the user and these two movies into the generator, we receive
two recommended books, i.e., “The Manhattan Hunt Club”
and “Ice Hunt”. Both “Prince of Darkness” and “Ice Hunt”
are about the doomsday theme, and both “Rambo: First
Blood” and “The Manhattan Hunt Club” talk about crime.
Although the user does not read the book “The Manhattan
Hunt Club” in the temporary testing period, she reads a simi-

lar book about crime, i.e., “Velocity: A Novel”. These results
indicate that CGN can learn reasonable mappings between
users’ behaviors in different domains over time.

5 Conclusion and Future Work
This paper studies the cross-domain recommendation task,
where we exploit a user’s behavior data in one domain to
generate item recommendations in another domain during the
same temporal period. We propose a novel recommendation
framework named CGN (i.e., Cycle Generation Networks),
which aims to learn a personalized mapping between a user’s
interaction itemsets in different domains. CGN uses two gen-
erator networks to enable the dual-direction mapping across
domains. Experiments on real datasets demonstrate the ef-
fectiveness of the proposed CGN model. As the recommen-
dation mechanism of CGN is different, CGN can be comple-
mentary to existing methods. As for future work, we would
like to develop different mapping strategies to map the gener-
ator outputs to real items. We are also interested in extending
CGN to build an interactive recomendation system.
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